1 First-Class Functions in Depth

1. Introduction: a discussion of what you can and cannot do with first-class functions. Sometimes, not

being able to do something is a feature.

2. Recap some higher-order functions (writing their types:

(a) app (consumes a function),
(b) A function that returns another function:

function double (x) { return x; }
function produceDouble (x) { return double; }

(¢) You can nest functions within each other (put double inside produceDouble)

(d) Useful combination of nesting and returning functions (makeaAdder). Show that each call does not

“overwrite the outer value”.

(e) You don’t have to name functions (refactor makeAdder). Go over using lambdas with map and

filter.

(f) Explain closures and go over their notation using the add function in makeaAdder. I want to write

makeAdder (10) === add [x —> 10]

(g) Predict the output of the crazy function below:

function crazy(x) {
function add(y) {
let tmp = x + 1;
X =x + 1;
return tmp + y;
}
return add;

}

’

let f = crazy(100);
let g = crazy(100);
console.log (£(100));
console.log (£(100));
console.log(g(100))

’

3. What do functions actually do? Why do we write functions?

(a) They let you parameterize a block of code. (Consider writing several add functions.)

(b) They delay evaluation. Code inside a function does not execute until it is applied.

function F (f) {
return 10;

}
F (function () {

console.log ("hi");

})i

4. Closures can be used to hide information:

// guessingGame (secret: number) => (guess: number) => undefined
function guessingGame (secret) {
function game (guess) {
if (guess === secret) {
console.log ("WINNER") ;
}
else if (guess < secret) {
console.log ("Guess higher");
return game;
}
else {
console.log("Guess lower");
return game;
}
}
return game;

}

let guesser = guessingGame (4383); // game[secret —-> 4383]
guesser (100) // === game|[secret —-> 4383]

Play the guessing game by using X % Y as the secret.

. The idea of curried functions: write original map and then write the addTena11 function. Show the
curried variant of map and show that addTenAll becomes much easier to write.

function map (f) {
return function(a) {

let r = [];
for (let 1 = 0; i < a.length; ++i) {
r.push(f(ali]));
}
return r;
}
}
let addTenAll = map (function(n) { return n + 10; });

Functions don’t need to take more than one argument.

. Example problem: given an input that does not use console.log:

function foo (f) {

f (function (x) {
console.log("a");
)i
}

	First-Class Functions in Depth

