
 Project 4: Data Wrangling with Json 

1 Background 
JavaScript Object Notation (JSON) is a format for storing and exchanging data. Roughly 
speaking, a JSON value is any JavaScript value with the exception of functions. For example, the 
following text is JSON: 
 
[ 

 { 

   "Department": "Computer Science", 

   "Course Number": 220, 

   "Instructor": "Joydeep Biswas", 

   "Offered": true 

 }, 

 { 

   "Department": "Computer Science", 

   "Course Number": 589, 

   "Instructor": "Joydeep Biswas", 

   "Offered": false 

 } 

] 

 
This example shows a JSON array with two elements, where each element is a JSON dictionary. 
Each JSON dictionary has a set of keys—which are strings—and values—which are JSON 
values themselves. The example shows that JSON values include strings, numbers, and 
booleans. Note that arrays and objects are JSON values themselves. Therefore, arrays and 
dictionaries may be nested: 
[ 

 { 

   "x": { 

"y": [ 1, 2, 3 ] 

   } 

 }, 

 "Something else" 

] 

 
The example above also shows that JSON arrays may be heterogeneous: the two elements of the 
array are an object and a string.  
 
Ocelot has a function called lib220.loadJSONFromURL that takes a URL for a JSON file as a 
string and returns the file as a JavaScript object. This function also takes care of parsing the 



JSON string notation, and providing you directly with an object. Here is an example of how to 
call lib220.loadJSONFromURL() , as executed in the Ocelot terminal: 
 
> lib220.loadJSONFromURL('https://people.cs.umass.edu/~joydeepb/yelp-tiny.json'); 

< [ 

   { 

     name: "China Garden", 

     city: "Stanley", 

     state: "NC", 

     stars: 3, 

     review_count: 3, 

     attributes: { 

       RestaurantsAttire: "casual", 

       Alcohol: "none", 

       OutdoorSeating: false 

     }, 

     categories: [ 

       "Chinese", 

       "Restaurants", 

     ] 

   }, 

   { 

     name: "Enterprise Rent-A-Car", 

     city: "Mesa", 

     state: "AZ", 

     stars: 4, 

     review_count: 3, 

     attributes: {}, 

     categories: [ 

       "Hotels & Travel", 

       "Car Rental", 

     ] 

   }, 

  ] 

 
 

2 The Yelp Dataset 
The business review site Yelp releases a large dataset of restaurants (and other businesses) in a                               
JSON format. In this assignment, you will use this dataset to answer vital questions such as                               
“What is the most popular restaurant in California?”. Unfortunately, the full dataset is nearly                           
7GB, which is too large. Therefore, you will instead use a subset of the Yelp data. Each entry in                                     



the dataset is an array of JSON objects and each JSON object looks like this: 

{ 

  name: "China Garden", 

  city: "Stanley", 

  state: "NC", 

  stars: 3, 

  review_count: 3, 

  attributes: { 

    RestaurantsAttire: "casual", 

    Alcohol: "none", 

    OutdoorSeating: false 

  }, 

  categories: [ 

    "Chinese", 

    "Restaurants" 

  ] 

}  
 

The following url can be used to load the JSON file for this dataset into Ocelot: 
https://people.cs.umass.edu/~joydeepb/yelp.json 
 
For the scope of this project, you can assume the type of a Restaurant object to be like so: 
type Restaurant = { 

  name: string, 

  city: string, 

  state: string, 

  stars: number, 

  review_count: number, 

  attributes: {} | {  

    Ambience: {  

      [key: string]: boolean  

    }  

  }, 

  categories: string[]  

} 
Ambience: {[key: string]: boolean} denotes that there are variable number of key-value 
pairs where the key is a string and the value is a boolean for the Ambience property.  

https://people.cs.umass.edu/~joydeepb/yelp.json


3 Programming Task 

Overview 
The goal of the programming task is to define a class FluentRestaurants that supports the 
fluent design pattern to filter the dataset. We can use this class to perform queries such as 
“What vegan restaurants are in Wyoming?”  Or “Which Mexican restaurants in NY are rated 
below 2 stars?” The fluent design thus allows the queries to be chained in arbitrary orders, with 
specified constraints, much like a user might wish to, on the Yelp website, to find specific 
restaurants of interest. For example, here is how you would use the class FluentRestaurants 
to run two queries: 
 

let data = lib220.loadJSONFromURL( 

  'https://people.cs.umass.edu/~joydeepb/yelp.json'); 
let f = new FluentRestaurants(data); 

 

f.ratingLeq(5) 

  .ratingGeq(3) 

  .category('Restaurants') 

  .hasAmbience('casual') 

  .fromState('NV') 

  .bestPlace().name; 

 

f.ratingLeq(4) 

  .ratingGeq(2) 

  .category('Restaurants') 

  .hasAmbience('romantic') 

  .fromState('AZ') 

  .bestPlace().name; 

 

 
The key idea is that you can compose these functions together to pose complex data queries. In 
the above snippet, the first query determines the best “casual” restaurant in Nevada with at 
least 3 stars and at most 5 stars. The second query determines the best “romantic” restaurant in 
Arizona that has a rating of at least 2 stars and at most 4 stars. Although this is a dataset of 
restaurants and businesses, you can assume all objects in the dataset are restaurants. 

https://people.cs.umass.edu/~joydeepb/yelp.json'


Specifications 
Create a JavaScript file in Ocelot, define a FluentRestaurants class, and then implement the 
class methods enumerated below utilizing the Fluent Pattern discussed in lecture. The 
constructor should be defined as follows:  
constructor(jsonData) { 

   this.data = jsonData; 

 } 

 
 
To work with JSON objects, you will need to use the lib220.getProperty(jsonObj, 
memberStr) library function.   
getProperty(obj: Object, memberStr: string):  

  { found: true, value: any } | { found: false } 

lib220.getProperty takes in a parsed JSON object and the string name of an object member 
and returns another object. The returned object has two member variables, found and value, to 
indicate whether the property with the specified string was found in the object or not, and if so, 
to return its value.  Here is an example usage: 
test("Usage for getProperty", function() { 

  let obj = { x: 42, y: "hello"}; 

  assert(lib220.getProperty(obj, 'x').found === true); 

  assert(lib220.getProperty(obj, 'x').value === 42); 

  assert(lib220.getProperty(obj, 'y').value === "hello"); 

  assert(lib220.getProperty(obj, 'z').found === false); 

}); 
 
The FluentRestaurants class must implement the following methods: 
Method 1: 
fromState(stateStr: string): FluentRestaurants 

It takes a string, stateStr, and returns a new FluentRestaurants object in which all 
restaurants are located in the given state, stateStr.  
 
Method 2: 
ratingLeq(rating: number): FluentRestaurants 
It takes a number, rating, and returns a new FluentRestaurants object that holds restaurants 
with ratings less than or equal to rating. 
 
Method 3: 
ratingGeq(rating: number): FluentRestaurants 

It takes a number, rating, and returns a new FluentRestaurants object that holds restaurants 
with ratings which are greater than or equal to rating. 
 



Method 4:  
category(categoryStr: string): FluentRestaurants 
It that takes a string,  categoryStr, and produces a new FluentRestaurants object that holds 
only those restaurants that have the provided category, categoryStr. 
 
Method 5: 
hasAmbience(ambienceStr: string): FluentRestaurants 
It takes a string, ambienceStr, and produces a new FluentRestaurants object with 
restaurants that have the provided ambience, ambienceStr. Each restaurant object contains an 
‘attributes’ key that may or may not contain an Ambience key, which itself is an object: 
{ ... 

  attributes: { 

    ... Ambience: { 

            hipster: false,  

            trendy: false,  

            upscale: false,  

            casual: false  

         }  

    }  

}  

 

Each member of the Ambience object has a key-value pair for ambience types, and whether the 
restaurant has that ambience or not. For a restaurant object to have a given ambience, the value 
for that particular ambience must be true. 
 
Method 6: 
bestPlace(): Restaurant | {} 
It returns the “best” restaurant. The “best” restaurant is the highest rated restaurant. If there is a 
tie, pick the one with the most reviews. If there’s a tie with the most reviews, pick the first 
restaurant. If there is no matching result, it should return an empty object. 

4 Testing Your Code 
You will have to test your code thoroughly to ensure that it robustly handles the challenges of 
working with real-world data, including missing / optional fields and variable structure. To 
help you get started, we have provided a few test cases here. It is up to you to define additional 
tests to check your solution for correctness. 
 
const testData = [ 
 { 

    name: "Applebee's", 



    state: "NC", 

    stars: 4, 

    review_count: 6, 

  }, 

  { 

    name: "China Garden", 

    state: "NC", 

    stars: 4, 

    review_count: 10, 

  }, 

  { 

    name: "Beach Ventures Roofing", 

    state: "AZ", 

    stars: 3, 

    review_count: 30, 

  }, 

  { 

    name: "Alpaul Automobile Wash", 

    state: "NC", 

    stars: 3, 

    review_count: 30, 

  } 

] 

 

test('fromState filters correctly', function() { 

    let tObj = new FluentRestaurants(testData); 

    let list = tObj.fromState('NC').data; 

    assert(list.length === 3); 

    assert(list[0].name === "Applebee's"); 

    assert(list[1].name === "China Garden"); 

    assert(list[2].name === "Alpaul Automobile Wash"); 

}); 

 

test('bestPlace tie-breaking', function() { 

    let tObj = new FluentRestaurants(testData); 

    let place = tObj.fromState('NC').bestPlace(); 

    assert(place.name === 'China Garden'); 

}); 

 

 


