Project: Rapidly-Exploring Random Trees

1 Background

The Path Planning problem involves finding a path from a start to a goal point that do not collide with
obstacles. This is a fundamental problem that every mobile robot must be able to solve. In this project, you
will implement an algorithm called Rapidly-Ezploring Random Tree (RRT) to plan for collision-free paths in
2-dimensional space. The figure below shows an example result: the red dot indicates the start location, the
green dot the goal location, the blue lines the built tree, and the green lines the obstacle-free path found.

S AT
SR

AR g
Al

b L,

The first line of your program must be the following:

let r = require('rrt’);

This line loads a library of geometry functions, visualization tools, and example maps.

2 Provided Geometry Classes and Functions

We have provided several geometry helper functions and classes that you will need for this project.

Point class represents a two-dimensional point:

let p = new r.Point (12, 34); // produces { x: 12, y: 34 }

The Line class represent a line segment:

let 1 = new r.Line (new r.Point (1, 2), new r.Point (3, 4));

// produces { pl: {

x: 1, y: 2}, p2: { x: 3, y: 4 } }

The intersects function determines whether two line segments intersect:

r.intersects (linel:

r.Line, line2: r.Line): boolean

The

3 Maps

The map in which the RRT planner will work on is defined by two things: its size and the obstacles inside
of it. All the maps in this project will have a square shape: their height and width will be equal. Thus,
the size of a map can be represented by a single numerical variable, named mapSize which will reside in the
options object (see the following section).

The walls, or obstacles, of the map are represented by a single array containing several Line objects.
Each of this objects corresponds to exactly one wall inside the map. The rrt library has two maps that you
can use for testing, and a function that generates random hard maps:

r.getDemoMap () : { size: number, lines: Line[] }
r.getIrregularObstacleMap(): { size: number, lines: Line[] }
r.generateHardMap (size: number, spacing: number,

opening: number): { size: number, lines: Line[] }

You can visualize these maps using a drawing canvas:

let canvas = 1ib220.newCanvas (400,400)
r.drawMap (canvas, r.getDemoMap());

4 Programming Task
Required Helper Functions You will need to implement the following helper functions:
® distance(pl: Point, p2: Point): number

distance calculates the distance between two points.

® samplePoint (mapSize: number, goal: Point, goalBias: number): Point

samplePoint returns either (1) a randomly sampled 2D point within the map or (2) the goal.
The function randomly chooses between the two outcomes, based on the value of goalBias. When
goalBias === 1, it always produces goal and when goalBias === 0 it always returns a randomly
sampled point.

® collides(map: Line[], pl: Point, p2: Point): boolean
collides returns true if the line from pl to p2 intersects of the lines in map.

® getPath(goal: Tree): Point/[]

getPath takes a subtree with the goal as the node and returns the path to the starting point. The
first point in the array must be the goal, and the last point the start point.

Representing the Random Tree Implement the Tree class (sketched in fig. , which will be used to
implement the RRT algorithm. The class has the following methods:

e tree.nearest (p) returns the root of a subtree that is closest to p.

e tree.extend(p, maxExtension) produces a point r. If the distance between p and tree.node is
less than maxExtension then r should be p. Otherwise, r should be the point on the line between
tree.node and p, such that distance (tree.node, r) === maxExtension.

e tree.add(p) adds a new immediate subtree to tree with p as the root node and no sub-children.

1 class Tree {

// constructor (node: Point, children:

constructor (node, children, parent) {
this.node = node;
this.children = children;
this.parent = parent;

}

0N U W N

9 // nearest(p : Point): Tree
10 nearest (p) {

11

12 }

13

Tree[], parent: Tree | null)

14 // extend(p: Point, maxExtension: number): Point

15 extend (p, maxExtension) {
16

17 }

18

19 // add(p: Point): Tree

20 add (p) |

21 coo

22 }

23 }

Figure 1:

Outline of the Tree class.

Putting Everything Together: The RRT Planner Define the following function to implement the

RRT algorithm:

type Options = {

mapSize: number,

maxExtension: number,

goalBias: number,

maxSamples: number,

callback: (p: Point, g: Tree, r:
}i

plan(start: Point, goal: Point, map:

Point, t: Tree) => void

Line[], options: Options): Point[] | undefined,

The options object has several parameters that affect the algorithm, most of which have been explained

above. The two new parameters are:

e maxSamples: The maximum number of samples that the RRT planner should generate. If the planner
does not find the goal after maxSamples steps, it should produce undefined instead of a path from

the goal to the start point.

e callback: A callback function that must be called at every iteration of the RRT algorithm, with the

following parameters

p, the current sampled point

q, the closest leaf in the tree to p
— r, the extension point from q to r

— t, the current tree grown so far.

5 Design decisions, debugging, and visualizations

You will have to make several design decisions to successfully implement the RRT algorithm. Here are some

points you will have to think about:

e The callback function in the options object can be used to visualize the progress of the RRT algorithm,
and to visually inspect for correctness. How can you implement this function? Note that the lines in
a map do not have units. For visualization purposes, you can assume the point positions use the same
units as the pixels in a canvas.

e The goalBias and maxExtension values vary how the RRT algorithm performs on different maps. While
we will not be evaluating your implementation for efficiency, you can play around with their values to
see how it affects the resulting tree generated, and the final path found.

6 Visualization

To aid in visualization, there are a number of drawing functions that are part of the rrt library. To visualize
the tree, you should make use of the callback function located in the options object. If you want to visualize
the tree as it is created step by step, you will want to use the 1ib220.sleep (n) function which will pause
your program for n milliseconds.

type Color = [number, number, number];

A color is represented as an array of three numbers, where each number is in the range 0 to 1. The numbers
indicate the intensity of red, green, and blue respectively.

r.newCanvas (width: number, height: number): Canvas

Creates a blank white canvas and displays it in Ocelot.

Canvas.drawLine (x1: number, yl: number, x2: number, y2: number, color: Color): void
Draws a line on the canvas from (x1,y1) to (22,y2).

Canvas.drawArc (x: number, y: number, radius: number, startRadians: number,
endRadians: number, color: Color): void

Draws an arc centered at (z,y), where the curve starts at startRadians and ends at endRadians.

Canvas.drawCircle (x: number, y: number, radius: number, color: Color): void

Draws a circle.

Canvas.drawFilledCircle (x: number, y: number, radius: number, color: Color): void

Draws a filled circle.

Canvas.clear();

Clears the canvas.

	Background
	Provided Geometry Classes and Functions
	Maps
	Programming Task
	Design decisions, debugging, and visualizations
	Visualization

